一、前言Matplotlib是一个优秀的用于Python数据可视化的第三方库。Matplotlib是一个基于numpy的python工具包。该软件包提供了丰富的数据绘制工具,主要用于绘制一些统计图形。 MATLAB的启发,matplotlib。Pyplot是一个用于绘制各种可视化图形的命令子库,相当于一个快捷方式。
# -*- coding: UTF-8 -*-
"""
三折线 黑白灰风格 标签label 标记点形状
"""
import matplotlib.pyplot as plt
# 生成x轴数据 列表推导式
x_data = [i for i in range(0, 55, 5)]
# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]
# 设置图形显示风格
plt.style.use('ggplot')
# 设置figure大小 像素
plt.figure(figsize=(8, 5), dpi=100)
# 绘制三条折线 点的形状 颜色 标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")
# x y 轴标签 字体大小
plt.xlabel("时间周期/min", fontsize=13)
plt.ylabel("直接信任度值", fontsize=13)
# 显示图例
plt.legend()
# 保存图片 展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()
from matplotlib.font_manager import FontProperties # 导入FontProperties
font = FontProperties(fname="SimHei.ttf", size=14) # 设置字体
# 哪里需要显示中文就在哪里设置
# -*- coding: UTF-8 -*-
"""
三折线 黑白灰风格 标签label 标记点形状
"""
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties # 步骤一
# 生成x轴数据 列表推导式
x_data = [i for i in range(0, 55, 5)]
# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]
# 设置图形显示风格
plt.style.use('ggplot')
font = FontProperties(fname="SimHei.ttf", size=14) # 步骤二
# 设置figure大小 像素
plt.figure(figsize=(8, 5), dpi=100)
# 绘制三条折线 点的形状 颜色 标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")
# x y 轴标签 字体大小
plt.xlabel("时间周期/min", fontsize=13, fontproperties=font)
plt.ylabel("直接信任度值", fontsize=13, fontproperties=font)
# 显示图例
plt.legend(prop=font)
# 保存图片 展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()
2. 方式二通过fontdict字典参数设置 fontdict={"family": "KaiTi", "size": 15, "color": "r"}
# -*- coding: UTF-8 -*-
"""
三折线 黑白灰风格 标签label 标记点形状
"""
import matplotlib.pyplot as plt
# 生成x轴数据 列表推导式
x_data = [i for i in range(0, 55, 5)]
# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]
# 设置图形显示风格
plt.style.use('ggplot')
# 设置figure大小 像素
plt.figure(figsize=(8, 5), dpi=100)
# 绘制三条折线 点的形状 颜色 标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")
# x y 轴标签 字体大小
plt.xlabel("时间周期/min", fontsize=13, fontdict={"family": "KaiTi", "size": 15, "color": "r"})
plt.ylabel("直接信任度值", fontsize=13, fontdict={"family": "KaiTi", "size": 15, "color": "k"})
# 显示图例
plt.legend(prop={'family': 'SimHei', 'size': 16})
# 保存图片 展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()
3. 方式三
# matplotlib其实是不支持显示中文的 显示中文需要一行代码设置字体
mpl.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False # 步骤二(解决坐标轴负数的负号显示问题)
# -*- coding: UTF-8 -*-
"""
三折线 黑白灰风格 标签label 标记点形状
"""
import matplotlib.pyplot as plt
import matplotlib as mpl
# 生成x轴数据 列表推导式
x_data = [i for i in range(0, 55, 5)]
# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]
# matplotlib其实是不支持显示中文的 显示中文需要一行代码设置字体
mpl.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False # 步骤二(解决坐标轴负数的负号显示问题)
# 设置图形显示风格
plt.style.use('ggplot')
# 设置figure大小 像素
plt.figure(figsize=(8, 5), dpi=100)
# 绘制三条折线 点的形状 颜色 标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")
# x y 轴标签 字体大小
plt.xlabel("时间周期/min", fontsize=13)
plt.ylabel("直接信任度值", fontsize=13)
# 显示图例
plt.legend()
# 保存图片 展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()
4. 方式四
font = {'family' : 'SimHei',
'weight' : 'bold',
'size' : '16'}
plt.rc('font', **font) # 步骤一(设置字体的更多属性)
plt.rc('axes', unicode_minus=False) # 步骤二(解决坐标轴负数的负号显示问题)
# -*- coding: UTF-8 -*-
"""
三折线 黑白灰风格 标签label 标记点形状
"""
import matplotlib.pyplot as plt
# 生成x轴数据 列表推导式
x_data = [i for i in range(0, 55, 5)]
# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]
font = {'family' : 'SimHei',
'weight' : 'bold',
'size' : '16'}
plt.rc('font', **font) # 步骤一(设置字体的更多属性)
plt.rc('axes', unicode_minus=False) # 步骤二(解决坐标轴负数的负号显示问题)
# 设置图形显示风格
plt.style.use('ggplot')
# 设置figure大小 像素
plt.figure(figsize=(8, 5), dpi=100)
# 绘制三条折线 点的形状 颜色 标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")
# x y 轴标签 字体大小
plt.xlabel("时间周期/min", fontsize=13)
plt.ylabel("直接信任度值", fontsize=13)
# 显示图例
plt.legend()
# 保存图片 展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()
|